top of page

PUBLICATIONS

 

JOURNAL PUBLICATIONS:

​

  1. Malhotra M, Pardasani M, Pathan S, Srikanth P, Shaw K, Abraham NM,* Jayakannan M* (2024) Star-polymer unimolecular micelle nanoparticle to deliver payload across the blood-brain barrier. Nanoscale. https://doi.org/10.1039/D4NR02636E (*Corresponding authors).

  2. Pandey S, Bapat V, Abraham JN, Abraham NM* (2024) Long COVID: from olfactory dysfunctions to viral parkinsonism, World Journal of Otorhinolaryngology - Head and Neck Surgery, https://doi.org/10.1002/wjo2.175 (*Corresponding author).

  3. Pardasani M, Ramakrishnan AM, Mahajan S, Kantroo M, McGowan E, Das S, Srikanth P, Pandey S, Abraham NM* (2023) Perceptual learning deficits mediated by somatostatin releasing inhibitory interneurons of olfactory bulb in an early life stress mouse model, Molecular Psychiatry, https://doi.org/10.1038/s41380-023-02244-3 (*Corresponding author).

  4. Mahajan S, Sen D, Sunil A, Srikanth P, Marathe SD, Shaw K, Sahare M, Galande S*, Abraham NM* (2023). Knockout of angiotensin converting enzyme-2 receptor leads to morphological aberrations in rodent olfactory centers and dysfunctions associated with sense of smell, Frontiers in Neuroscience, In Press, doi: 10.3389/fnins.2023.1180868 (*Corresponding authors).

  5. Bhowmik R, Pardasani M, Mahajan S, Magar R, Joshi SV, Nair GA, Bhattacharjee AS, Abraham NM* (2023). Persistent olfactory learning deficits during and post-COVID-19 infection, Current Research in Neurobiology. https://doi.org/10.1016/j.crneur.2023.100081 (*Corresponding author) 

  6. S, Subramani B, Samudra P, Srikanth P, Mahida V, Bhoge PR, Toraskar S, Abraham NM*, Kikkeri RV* (2022). Sulfation of  Heparan and Chondroitin Sulfate Ligands Enables Cell Specific Homing of Nanoprobes, Chemistry, A European Journal. https://doi.org/10.1002/chem.202202622 (*Corresponding authors)

  7. Pardasani M, Marathe SD, Purnapatre MM, Dalvi U, Abraham NM* (2021). Multimodal learning of pheromone locations, The FASEB Journal. doi: https://doi.org/10.1096/fj.202100167R (*Corresponding author).

  8. Sunny LP, Srikanth P, Sunitha AK, Tembulkar N, Abraham JN* (2021). Tryptophan-cardanol fluorescent nanoparticles inhibit α-synuclein aggregation and disrupt amyloid fibrils, Journal of Peptide Science. https://doi.org/10.1002/psc.3374

  9. Bhattacharjee AS, Joshi SV, Naik S, Sangle S, Abraham NM* (2020). Quantitative assessment of olfactory dysfunction accurately detects asymptomatic COVID-19 carriers, The Lancet EClinicalMedicine 10. DOI: 10.1016/j.eclinm.2020.100575 (Commentary: "Affected olfaction in COVID-19: Re-defining “asymptomatic”) (*Corresponding author).

  10. Jodar TO, Lage-Rupprecht V, Abraham NM, Rose CRM, Egger V (2020). Local postsynaptic signaling on slow time scales in reciprocal olfactory bulb granule cell spines matches asynchronous release, Frontiers In Synaptic Neuroscience (doi.org/10.3389/fnsyn.2020.551691).

  11. Bhattacharjee AS, Konakamchi S, Turaev D, Vincis R, Nunes D, Dingankar AA, Spors H, Carleton A, Kuner T, Abraham NM* (2019). Similarity and strength of glomerular odor representations define neural metric of sniff-invariant discrimination time. Cell Reports 28(11): P2966-2978.E5. doi: 10.1016/j.celrep.2019.08.015 (*Corresponding author).

  12. Gschwend O*, Abraham NM*, Lagier S, Begnaud F, Rodriguez I, Carleton A (2015). Neuronal pattern separation in the olfactory bulb improves odor discrimination learning. Nat Neurosci. 2015 Oct;18(10):1474-1482. doi: 10.1038/nn.4089. (*Equal contribution)

  13. Abraham NM*, Vincis R, Lagier S, Rodriguez I, Carleton A* (2014). Long term functional plasticity of sensory inputs mediated by olfactory learning. eLife 3:e02109. doi: 10.7554/eLife.02109 (*Corresponding authors).

  14. Abraham NM*, Guerin D, Bhaukaurally K, Carleton A* (2012). Similar odor discrimination behavior in head-restrained and freely moving mice. PLoS One 7:e51789. doi: 10.1371/journal.pone.0051789 (*Corresponding authors).

  15. Abraham NM, Egger V, Shimshek DR, Renden R, Fukunaga I, Sprengel R, Seeburg  PH,  Klugmann  M,  Margrie  TW,  Schaefer  AT and Kuner  T. (2010). Synaptic inhibition accelerates odor discrimination in mice.  Neuron 65, 399-411. doi: 10.1016/j.neuron.2010.01.009 (Cover story with preview “Linking local circuit inhibition to olfactory behavior: A critical role for granule cells in olfactory discrimination”).

  16. Abraham NM, Spors H, Carleton A, Margrie TW, Kuner T, Schaefer AT. (2004). Maintaining accuracy at the expense of speed: stimulus similarity defines odor discrimination time in mice. Neuron 44, 865-876. doi: 10.1016/j.neuron.2004.11.017 (With preview “Neural processing at the speed of smell”).

​

CONFERENCE PROCEEDINGS:

 

  1. Paul R, Sarkar S, Marathe SD, Murali K, Das S, Abraham NM,* Varma HM.* (2023) Functional imaging of olfactory bulb and somatosensory cortex in mice using small-animal blood flow imaging platform. Proc. SPIE 12378, Dynamics and Fluctuations in Biomedical Photonics XX, 123780B (7 March 2023); doi: 10.1117/12.2668690

​

INVITED BOOK CHAPTER:

​

  1. Meenakshi Pardasani and Nixon M. Abraham (2022) Neurotropic SARS-CoV-2: Causalities and Realities. COVID-19 Pandemic, Mental Health and Neuroscience - New Scenarios for Understanding and Treatment, IntechOpen DOI: 10.5772/intechopen.108573

 

PATENTS

 

  1. Olfactory-action meter for precise quantification of olfactory dysfunctions and neurocognitive deficits. Inventor: Nixon M. Abraham, Patent number: US 11,786,164 B2, The Director of United States Patent and Trademark Office, Date of Grant: 17th October 2023

  2. Olfactory-action meter for precise quantification of olfactory dysfunctions and neurocognitive deficits. Inventor: Nixon M. Abraham, Patent number: 432345, The Patent Office, Government of India, Date of Grant: 19th May 2023

 

PATENT PUBLICATIONS

 

  1. Nixon M. Abraham (2022). Olfactory-action meter for precise quantification of olfactory dysfunctions and neurocognitive deficits. Publication number: US-2022-0054075-A1

​

PUBLICATIONS - PREPRINTS:

 

  1. Marathe SD, and Abraham NM* (2024) Synaptic inhibition in the accessory olfactory bulb regulates pheromone location learning and memory (Preprint: bioRxiv https://doi.org/10.1101/2024.09.08.611942 *Corresponding author).

  2. Mahajan S, Tamboli S, Das S, Bhattacharjee AS, Pardasani M, Srikanth P, Marathe SD, Adlakha A, Ranjan L, Pandey S, Abraham NM* (2024) Mouse olfactory system acts as anemo-detector and discriminator. (Preprint: bioRxiv https://doi.org/10.1101/2024.08.28.610087 *Corresponding author).

  3. Bhowmik R, Pardasani M, Mahajan S, Bhattacharjee AS, Konakamchi S, Phadnis S, Mustafa T, McGowan E, Srikanth P, Marathe SD and Abraham NM* (2022) Uncertainty revealed by delayed responses during olfactory matching (Preprint: bioRxiv https://doi.org/10.1101/2022.09.11.507462 In Communication, *Corresponding author).

​

BEHIND THE WORK:

​

  1. Abraham NM, and Pardasani M (2023) Sense of smell under stress: Circuit mechanisms of olfactory perceptual deficits induced by early life adversity, Springer Nature (https://neurosciencecommunity.nature.com/posts/sense-of-smell-under-stress-circuit-mechanisms-of-olfactory-perceptual-deficits-induced-by-early-life-adversity?badge_id=molecular-psychiatry)

​

​

 

Research Highlights

NATURE INDIA 2024.png
LongCOVID-News.png
Lancet

IISER Pune uses smell to identify asymptomatic cases

Ratatouille_Final.png
female_naturalsettings_illustration.png

How do mice remember pheromone locations?

bottom of page